Lecture 07: Intro to ASR+HMMs

Instructor: Dr. Hossam Zawbaa

Image by kirkh.deviantart.com

Current error rates

Exact numbers depend very much on the specific corpus

Task	Vocabulary	Error Rate%	
Digits	11	0.5	
WSJ read speech	5K	3	
WSJ read speech	20K	3	
Broadcast news	64,000+	10	
Conversational Telephone	64,000+	20	

HSR versus ASR

Human Speech Recognition (HSR) versus Automatic Speech Recognition (ASR)

Task	Vocab	ASR	HSR
Continuous digits	11	0.5	0.009
WSJ 1995 clean	5K	3	0.9
WSJ 1995 w/noise	5K	9	1.1
SWBD 2004	65K	20	4

- Conclusions:
 - Machines about 5 times worse than humans
 - Gap increases with noisy speech
 - These numbers are rough

ASR Design

- Build a statistical model of the speech-to-words process
- Collect lots and lots of speech, and transcribe all the words.
- Train the model on the labeled speech
- Paradigm: Supervised Machine Learning + Search

Speech Recognition Architecture

HMMs for speech

Phones are not homogeneous!

Each phone (voice/speech) has 3 sub-phones

Resulting HMM word model for "six"

$\underbrace{\mathsf{Start}}_{\mathsf{b}} \xrightarrow{\mathsf{s}}_{\mathsf{b}} \xrightarrow{\mathsf{s}}_{\mathsf{m}} \xrightarrow{\mathsf{s}}_{\mathsf{f}} \xrightarrow{\mathsf{h}}_{\mathsf{b}} \xrightarrow{\mathsf{h}}_{\mathsf{b}} \xrightarrow{\mathsf{h}}_{\mathsf{m}} \xrightarrow{\mathsf{h}}_{\mathsf{b}} \xrightarrow{\mathsf{h}}} \xrightarrow{\mathsf{h}}_{\mathsf{h}} \xrightarrow{\mathsf{h}}_{\mathsf{h}} \xrightarrow{\mathsf{h}}_{\mathsf{h}} \xrightarrow{\mathsf{h}}_{\mathsf{h}} \xrightarrow{\mathsf{h}}} \xrightarrow{\mathsf{h}}_{\mathsf{h}} \xrightarrow{\mathsf{h}}_{\mathsf{h}} \xrightarrow{\mathsf{h}}_{\mathsf{h}} \xrightarrow{\mathsf{h}} \xrightarrow{\mathsf{h}}_{\mathsf{h}} \xrightarrow{\mathsf{h}}} \xrightarrow{\mathsf{h}} \xrightarrow{\mathsf{h}} \xrightarrow{\mathsf{h}} \xrightarrow{\mathsf{h}} \xrightarrow{\mathsf{h}} \xrightarrow{\mathsf{h}} \xrightarrow{\mathsf{h}}} \xrightarrow{\mathsf{h}} \xrightarrow{\mathsf{h}}} \xrightarrow{\mathsf{h}} \xrightarrow{\mathsf$

HMMs more formally

- Markov chains
- A kind of weighted finite-state automaton

 $Q = q_1 q_2 \dots q_N$ $A = a_{01} a_{02} \dots a_{n1} \dots a_{nn}$ q_0, q_{end}

a **transition probability matrix** A, each a_{ij} representing the probability of moving from state i to state j, s.t. $\sum_{j=1}^{n} a_{ij} = 1 \quad \forall i$

a special start and end state which are not associated with observations.

Markov Assumption: $P(q_i|q_1...q_{i-1}) = P(q_i|q_{i-1})$

a set of states

HMMs more formally

- Markov chains
- A kind of weighted finite-state automaton

Hidden Markov Models

• Bakis network Ergodic (fully-connected) network

• Left-to-right network

The Three Basic Problems for HMMs

- Problem 1 (Evaluation): Given the observation sequence O=(o₁o₂...o_T), and an HMM model Φ = (A,B), how do we efficiently compute P(O | Φ), the probability of the observation sequence, given the model
- Problem 2 (Decoding): Given the observation sequence O=(o₁o₂...o_T), and an HMM model Φ = (A,B), how do we choose a corresponding state sequence Q=(q₁q₂...q_T) that is optimal in some sense (i.e., best explains the observations)
- Problem 3 (Learning): How do we adjust the model parameters $\Phi = (A,B)$ to maximize P(O | Φ)?

Problem 1: computing the observation likelihood

Computing Likelihood: Given an HMM $\lambda = (A, B)$ and an observation sequence *O*, determine the likelihood $P(O|\lambda)$.

• Given the following HMM:

How to compute likelihood

- For a Markov chain, we just follow the states 3 1 3 and multiply the probabilities
- But for an HMM, we don't know what the states are!
- So let's start with a simpler situation.
- Computing the observation likelihood for a given hidden state sequence
 - Suppose we knew the weather and wanted to predict how much ice cream Jason would eat.
 - I.e. P(313 | H H C)

Computing likelihood for 1 given hidden state sequence

$$P(O|Q) = \prod_{i=1}^{n} P(o_i|q_i) \times \prod_{i=1}^{n} P(q_i|q_{i-1})$$

 $P(3 \ 1 \ 3|\text{hot hot cold}) = P(\text{hot}|\text{start}) \times P(\text{hot}|\text{hot}) \times P(\text{cold}|\text{hot}) \\ \times P(3|\text{hot}) \times P(1|\text{hot}) \times P(3|\text{cold})$

Computing total likelihood of 3 1 3

- We would need to sum over
 - Hot hot cold
 - Hot hot hot
 - Hot cold hot
 -
- How many possible hidden state sequences are there for this sequence?
- How about in general for an HMM with N hidden states and a sequence of T observations?

• N^T

 So we can't just do separate computation for each hidden state sequence.

Instead: the Forward algorithm

- A kind of **dynamic programming** algorithm
 - Uses a table to store intermediate values
- Idea:
 - Compute the likelihood of the observation sequence
 - By summing over all possible hidden state sequences
 - But doing this efficiently
 - By folding all the sequences into a single **trellis**

The Forward Trellis

The forward algorithm

- Each cell of the forward algorithm trellis alpha_t(j)
 - Represents the probability of being in state j
 - After seeing the first t observations
 - Given the automaton
- Each cell t

$$\alpha_t(j) = P(o_1, o_2 \dots o_t, q_t = j | \lambda)$$

We update each cell

- $\alpha_{t-1}(i)$ the previous forward path probability from the previous time step
- a_{ij} the **transition probability** from previous state q_i to current state q_j
- $b_j(o_t)$ the state observation likelihood of the observation symbol o_t given

the current state j

Decoding

- Given an observation sequence
 - 313
- And an HMM
- The task of the **decoder**
 - To find the best hidden state sequence
- Given the observation sequence O=(o₁o₂...o_T), and an HMM model Φ = (A,B), how do we choose a corresponding state sequence Q=(q₁q₂...q_T) that is optimal in some sense (i.e., best explains the observations)

Decoding

- One possibility:
 - For each hidden state sequence
 - HHH, HHC, HCH,
 - Run the forward algorithm to compute P($\Phi \mid O$)
- Why not?
 - N^T
- Instead:
 - The Viterbi algorithm
 - Is again a **dynamic programming** algorithm
 - Uses a similar trellis to the Forward algorithm

The Viterbi trellis

• The Viterbi algorithm is a dynamic programming algorithm for finding the most likely sequence of hidden states—called the Viterbi path—that results in a sequence of observed events, especially in the context of Markov information sources and hidden Markov models.

HMM for digit recognition task

The Evaluation (forward) problem for speech

- The observation sequence O is a series of Mel Frequency Cepstral Coefficient (MFCC) vectors
- The hidden states W are the phones and words
- For a given phone/word string W, our job is to evaluate P(O|W)

Search space with bigrams

Evaluation

• How to evaluate the word string output by a speech recognizer?

Word Error Rate

• Word Error Rate = 100 (Insertions + Substitutions + Deletions) / Total Word in Correct Transcript

Alignment example:

REF: portable ****PHONE UPSTAIRS last night soHYP: portable FORM OFSTORESEval:ISSWER = 100 (1+2+0)/6 = 50%

NIST sctk-1.3 scoring softare: Computing WER with sclite

- <u>http://www.nist.gov/speech/tools/</u>
- Sclite aligns a hypothesized text (HYP) (from the recognizer) with a correct or reference text (REF) (human transcribed)

id: (2347-b-013)

Scores: (#C #S #D #I) 9 3 1 2

REF:was an engineer SO Ii was always with **** **** MEN UMand theyHYP:was an engineer ** AND i was always with THEM THEY ALL THAT and theyEval:DSIIS

WER = 100 (2+3+1)/13 = 46.15%